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Who am I?
● Associate Professor in CS, University of 

Rennes 1, France
● Principal Investigator at BFA (China)

Research interests:

● Virtual cinematography: to transpose techniques/practice/style from real 
movies to virtual 3D environments?

○ Understanding movies by analysing elements of film style (composition, shots, ...)
○ Computational models for cinematography
○ Generating synthetic movies (moving cameras, creating cuts, laying out scenes)
○ In order to tell a story 

● Easing the control over virtual cinematography
● Applications to games, interactive narratives, previsualisation



Topics addressed today

● Basics of keyframe animation (the 101 of animation)

● Introduction to motion planning (slides inspired by CS@CMU)

● Research in interactive drone cinematography (my own research)



Introduction

• Traditional animation



Introduction

• Walt Disney (1901-1966)
• Studios created in 1923
• Junior and senior animators

• Work organization 
• Rationalization 

• “Senior = user”

• “Junior = computer”



Computer animation

• Computing the evolution of different parameters that impact on a scene 
representation
• Constant shape: animation of poly-articulated systems
• Variable shape: animation of deformable models

• What are these parameters ?
• Position, orientation
• Shape
• Material (color, texture…)
• Lights
• Cameras
• …

• Each scalar parameter that can change over time is called a degree of freedom 
(DOF)



Introduction

• Domains
• Computer games

• Virtual reality

• Special effects

• Computer-generated films

• Simulation

• Robotics

• …



Keyframe interpolation
Used everywhere…



Principle

• Keyframe
• A pair (time, set of parameters)

• Define the state of a 3D object at a given 
time

• Set of parameters
• Position

• Orientation

• …

t0
t1

t2

t3



Principle

• Keyframes interpolation
• Automatic generation of intermediate frames between keyframes
• Interpolation of positions, orientations…

• Advantages: computationally low cost

• Can be used to
• Reduce the computational cost when used with complex models
• Mix movements (motion blending)
• Generate intermediate frames (ex: slow motion)
• …



A naïve approach

• Linear interpolation of positions and 
orientations
• No control on trajectory and/or speed 

• We will focus on two aspects
• Interpolation of positions

• Interpolation of orientations

obtained

expected

Keyframes

Interpolated

P(t)=x(t),y(t),y(t)



Interpolation of positions

• Trajectory: a parameterized curve 𝑄(𝑢)

• Control points 𝑃1, 𝑃2, … , 𝑃𝑘
• Fine control of the trajectory

• Easy description 

• Finding a function:

൝
ℝ → ℝ3

𝑢 → 𝑄𝑃1,𝑃2,…,𝑃𝑘(𝑢)

Clef 1

Clef 2

P0

P1

Pk



Interpolation of positions

• Interpolation using linear combinations
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Interpolation of positions

• Parametric trajectories: desired properties

• Independence of the effect of 𝑃𝑘 (control points)

• Continuity 𝐶𝐾−1

• Affine invariance: 𝜑 𝑄 𝑢 = σ𝑘=0
𝐾 𝜑 𝑃𝑘 𝑏𝑘(𝑢)

• Convex hull: ∀u,σ𝑘 𝑏𝑘 𝑢 = 1



Bezier curves (1970)

• 𝑄 𝑢 = ෌
𝑘
𝐵k,𝐾 𝑈 𝑃𝑘 , 𝑢 ∈ 0; 1

• 𝐵𝑛,𝑘 𝑢 = 𝐶𝑛
𝐾u𝑛 1 − 𝑢 𝐾−𝑛 (Bernstein polynomial)

• Some properties:
• Manipulation of tangents at the beginning and the end of the curve

• Affine invariance 

• Curve in the convex hull of control points

P1

Q(0)=K(P1-P0)P0

PK

PK-1

Q(1)=K(PK-PK-1)



Cubic Bezier curves

• Advantage
• Local control of the curve

• Minimal degree to ensure 𝐶2 continuity

• 𝑄 𝑈 = 𝑢3 𝑢2 𝑢 1

−1 3 −3 1
3 −6 3 0
−3 3 0 0
1 0 0 0

𝑃1
𝑃2
𝑃3
𝑃4

P1

P2

P0
Q(0)=3(P1-P0)

Q(1)=3(P3-P2)

P3

B0,3 B3,3

B1,3 B2,3

1

1

Cubic Bezier curve

Bernstein polynomials 
(degree 3)



Cubic Bezier curves

• Stitching Cubic Bezier curves
• Provides a better local control

But

• Warning on the junction!

• 𝑄𝑖 𝑢 = ෌
𝑘=0

3
𝑃𝑘+3𝑖𝐵k,3 𝑢 , 𝑢 ∈ [0; 1]

P1

P2

P0
P3



B-Splines

• 𝑄𝑖 𝑢 = σ𝑘=0
3 𝑃𝑖+𝑘𝐵𝑘 𝑢 = 𝑢3 𝑢2 𝑢 1
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B-splines vs Bezier

• Bezier

• B-spline
• Ensures 𝐶2 continuity

b3b0

b1 b2

Uu=U-i



Hermite polynomial basis 

•

𝑏0 𝑢 = 2𝑢3 − 3𝑢2 + 1

𝑏1 𝑢 = −2𝑢3 + 3𝑢2

𝑏2 𝑢 = 𝑢3 − 2𝑢2 + 𝑢

𝑏3 𝑢 = 𝑢3 − 𝑢2

𝑄 𝑢 = σ𝑖=0
3 𝑏𝑖 𝑢 𝑃𝑖(𝑢)

• 𝑄 𝑢 = 𝑢3 𝑢2 𝑢1 1

2 −2 1 1
−3 3 −2 −1
0 0 1 0
1 0 0 0

𝑃𝑖
𝑃𝑖+1
𝐷𝑖
𝐷𝑖+1

• Where 𝑃𝑖 , 𝐷𝑖 is a couple (starting point, tangent at the starting point)
and 𝑃𝑖+1, 𝐷𝑖+1 is a couple (ending point, tangent at the ending point)



Trajectory following

• Path described by 𝑄 𝑢 , 𝑢 ∈ [0; 1]

• Problem: how to control speed when moving along the curve?

u=0

u=0.1

u=0.2

u=0.3

u=0.4

u=0.5

u=0.6

u=0.7
u=0.8

u=0.9

s=0

s=1

s=2

s=3 s=4

s=5

s=6

s=7

s=8 s=9

u : parameter

s : curvilinear abscissa

(distance along the curve)



Trajectory following

• Use the curvilinear abscissa to control movement along the path
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Interpolation of positions

• Choosing the good interpolator
• If manually edited

• Bezier curves are easy to manipulate

• B-splines guaranty the 𝐶2 continuity

• If an object is moving along a trajectory
• Hermite polynomial basis can be used

• Start and end positions, start and end velocities

• Another solution
• Given positions, speeds, accelerations etc…

• Find the coefficients of a polynomial by solving a simple linear system



Interpolation of rotations

• Problem when using 3 angles to represent rotations (Euler or others)
• The gimbal lock problem:

• 𝑅 𝜃1,
𝜋

2
, 𝜃3 =

0 0 −1 0
sin(𝜃1 − 𝜃3) cos(𝜃1 − 𝜃3) 0 0
cos(𝜃1 − 𝜃3) − sin(𝜃1 − 𝜃3) 0 0

0 0 0 1

Loss of one degree of freedom

Rotation around Z becomes a rotation around the original X axis

Representation is not unique!



The gimbal lock problem



Interpolation of rotations

• Extension of the notion of complex numbers (Hamilton, 1843)
• 𝑞 = 𝑎 + 𝑏𝒊 + 𝑐𝒋 + 𝑑𝒌, also noted 𝑠, 𝑣 , 𝑠 ∈ ℝ, 𝑣 ∈ ℝ3

With  ൞
𝑖2 = 𝑗2 = 𝑘2 = −1

𝑖𝑗 = 𝑘
𝑗𝑖 = −𝑘

• Group structure
• 𝑞1𝑞2 = (𝑠1𝑠2 − 𝑣1𝑣2, 𝑠1𝑣2 + 𝑠2𝑣1 + 𝑣1 × 𝑣2)

• Conjugate quaternion
• 𝑞ത𝑞 = 𝑠, 𝑣 𝑠, −𝑣 = 𝑠2 + 𝑣 2 = 𝑞 2

• Reciprocal quaternion

• 𝑞−1 =
ത𝑞

𝑞 2



Interpolation of rotations

• Let ቊ
𝑝 = (0, 𝑟)
𝑞 = (𝑠, 𝑣)

with 𝑞 = 1

• 𝑞 can be rewritten cos 𝜃 , sin 𝜃 𝑛 , 𝑛 ∈ ℝ3

• Interpretation of the operation 𝑞𝑝ത𝑞(= 𝑞𝑝𝑞−1)

𝑞𝑝ത𝑞 = (0, cos 2𝜃 𝑟 + (1 − cos 2𝜃 𝑛 𝑛. 𝑟 + sin 2𝜃 𝑛 × 𝑟)

= (0, 𝑛. 𝑟 𝑛 + cos 2𝜃 𝑟 − 𝑛 𝑛. 𝑟 + sin 2𝜃 𝑛 × 𝑟)

𝑟𝑛 𝑛 × 𝑟𝑡𝑟𝑡

𝑅𝑛,2𝜃(𝑟𝑡)

q

n

rt

rn

r

trn



Interpolation of rotations

• Let ቊ
𝑝 = (0, 𝑟)
𝑞 = (𝑠, 𝑣)

with 𝑞 = 1

• 𝑞 can be rewritten cos 𝜃 , sin 𝜃 𝑛 , 𝑛 ∈ ℝ3

• We can conclude that the operation 𝑞𝑝ത𝑞(= 𝑞𝑝𝑞−1)
computes a rotation of 𝑟 around 𝑛 axis with angle 2𝜃



Interpolation of rotations

• Interest of quaternions
• Unique representation of a rotation of angle 𝜃 around 

axis 𝑛

𝑞 = (cos
𝜃

2
, sin

𝜃

2
𝑛), 𝑛 = 1

• Two successive rotations of angle 𝜋 around Z and Y are 
equivalent to a rotation of angle 𝜋 around X

• With quaternions
• 0, 0,1,0 0, 0,0,1 = 0, 0,1,0 × 0,0,1 = (0, 1,0,0 )

• That’s it!

Provides a solution to the gimbal lock problem



Interpolation of rotations

• From quaternions to homogeneous matrices

(0, 𝑝′) = 𝑞(0, 𝑝)𝑞−1, 𝑞 = 𝑊, 𝑋, 𝑌, 𝑍 = (cos
𝜃

2
, sin

𝜃

2
𝑛)

𝑝′ =

1 − 2𝑌2 − 2𝑍2 2𝑋𝑌 − 2𝑊𝑍 2𝑋𝑍 + 2𝑊𝑌 0
2𝑋𝑌 + 2𝑊𝑍 1 − 2𝑋2 − 2𝑍2 2𝑌𝑍 − 2𝑊𝑋 0
2𝑋𝑍 − 2𝑊𝑌 2𝑌𝑍 + 2𝑊𝑋 1 − 2𝑋2 − 2𝑌2 0

0 0 0 1

𝑝



Interpolation of rotations

• From homogeneous matrices to quaternions

𝑀 =

1 − 2𝑌2 − 2𝑍2 2𝑋𝑌 − 2𝑊𝑍 2𝑋𝑍 + 2𝑊𝑌 0
2𝑋𝑌 + 2𝑊𝑍 1 − 2𝑋2 − 2𝑍2 2𝑌𝑍 − 2𝑊𝑋 0
2𝑋𝑍 − 2𝑊𝑌 2𝑌𝑍 + 2𝑊𝑋 1 − 2𝑋2 − 2𝑌2 0

0 0 0 1

=

𝑀11 𝑀12 𝑀13 0
𝑀21 𝑀22 𝑀23 0
𝑀31 𝑀32 𝑀33 0
0 0 0 1

𝑇𝑟𝑎𝑐𝑒 𝑀 = 4 1 − 𝑋2 − 𝑌2 − 𝑍2 = 4 1 − 𝑞 2 +𝑊2 ⇒ 𝑊 =
1

2
𝑇𝑟𝑎𝑐𝑒(𝑀)

𝑊 ≠ 0 ⇒ 𝑋 =
𝑀32 −𝑀23

4𝑊
, 𝑌 =

𝑀13 −𝑀31

4𝑊
, 𝑍 =

𝑀21 −𝑀12

4𝑊



Interpolation of orientations

• To interpolate between orientations
• Round trip in quaternion space

Rx1
Ry1
Rz1

Rx2
Ry2
Rz2

Minterpolation

q1

q2

q



Quaternion interpolation

• ቐ
𝑝 = 𝛼𝑝1 + 𝛽𝑝2, 𝑝 = 1, 𝑝1 = 1, 𝑝2 = 1

𝑝1. 𝑝2 = cos Ω
𝑝1. 𝑝 = cos 𝜃

⇒ ൝
𝛼2 + 𝛽2 + 2𝛼𝛽 cos Ω = 1

𝛼 + 𝛽 cos Ω = cos 𝜃
⇒ ቊ

(𝛼 + 𝛽 cosΩ)2+𝛽 sin2Ω = 1
𝛼 + 𝛽 cos Ω = cos 𝜃

⇒ ቊ
cos2𝜃 + 𝛽2sin2Ω = 1
𝛼 + 𝛽cos Ω = cos 𝜃

⇒ ൞ 𝛽2 =
1 − cos2𝜃

sin2Ω
𝛼 + 𝛽cos Ω = cos 𝜃

⇒ 𝑝 = 𝑝1
sin(Ω − 𝜃)

sinΩ
+ 𝑝2

sin 𝜃

sinΩ

𝑠𝑙𝑒𝑟𝑝 𝑝1, 𝑝2, 𝑢 = 𝑝1
sin( 1 − 𝑢 Ω)

sinΩ
+ 𝑝2

sin(𝑢Ω)

sinΩ
, 𝑢 ∈ [0; 1]

Hypersphere of unit 

quaternions

q

1 q

2

Linear interpolation

Spherical linear

interpolation



Quaternion interpolation

• Slerp: Spherical linear interpolation
• Produces the straightest and shortest path between unit quaternions

• Known to generate “natural” rotations when used to interpolate quaternions

• Can be used with any unit N-D vector

• So remember
• To avoid problems with Euler angles, use quaternions!

• Most of 3D animation toolkits use quaternions in combination with 
homogeneous coordinates and 4x4 matrices



Conclusion

• Interpolation techniques are used everywhere
• Allow to generate intermediate states from known / computed states 

• Low computational cost

• Splines can be used to interpolate
• Positions, Orientation with Euler angles (not advised to), colors…

• Anything that needs to be interpolated (trivial extension to N-D)

• Quaternions are used to interpolate orientations
• Solution to the gimbal lock i.e. unicity of the representation of a rotation



Motion Planning
Representations for motion planning

Planning trajectories

Reactive navigation



Motion Planning

• Automatic generation of motion

• So far, motion considered « out 
of any environment »

• Motion planning: generating a 
motion among obstacles



Applications

• Manufacturing: robot programming (welding, 
painting, assembly). 

• Design for manufacturing and servicing

• Maintenance planning

• Autonomous vehicles: transportation, tractors, 
planetary exploration, military. 

• Graphic animation: video games, movie 
generation.

• Medical surgery: implants, radiosurgery.

• Molecular biology: drug design. 



The Piano Movers’ problem

• Given an environment with 
obstacles and a piano, is it possible 
to move the piano from one 
position and orientation, called its 
configuration q, to another without 
colliding with the walls or the 
obstacles in a real geometric space 
or workspace W?

• SCHWARTZ J. T., SHARIR M. “On the 
piano movers’ problem II, general 
techniques for computing 
topological properties of real 
algebraic manifolds.” Advances of 
Applied Maths 4 (1983), 298–351.



Definition

A collision-free path from
initial to goal positions

Initial and 
Goal 

positions

Environment
geometry

Robot 
description

Planning Algorithm



Problem extensions

• Moving obstacles 

• Multiple robots 

• Movable objects 

• Deformable robots

• No or partial prior knowledge of environment 

• Uncertainty in sensing and control 

• Non-holonomic constraints 

• Dynamic constraints

• Optimal planning 

• Visibility constraints 



Why planning motions?

• Automatic motion generation • Validation purpose



Applications: Mobile Robots

Roomba iCreate
Mars Rover

Google car
DARPA Urban Challenge



Applications: Robotic Manipulation 



Applications: Computer Games/Graphics



Applications: Assembly Planning



Applications: Computational Biology



Approaches

• Exact algorithms
• Either find a solution or prove none exists
• Very computationally expensive
• Unsuitable for high-dimensional spaces

• Discrete Search
• Divide space into a grid, use A* to search
• Good for vehicle planning
• Unsuitable for high-dimensional spaces

• Sampling-based Planning
• Sample the C-space, construct path from 

samples
• Good for high-dimensional spaces
• Weak completeness and optimality guarantees



Evaluation criteria

• Completeness

• Optimality

• Speed

• Generality



The Configuration Space



Configuration 
● A configuration specifies the 

position of all points of a mechanical 
system in relation to a given 
coordinate system

● A configuration in expressed using a 
vector or generalised coordinates (in 
bold fonts): q

● Example: given a robot with n-links, 
a complete specification of the 
location of the robot is called its 
configuration



Configuration space
● It’s the space of all possible configurations for a given mechanical system
● Written C-space (configuration space)
● Formalized by [Lozano-Perez’97]  



Collision-free space
● The configuration space of a given mechanical system without collisions 

with obstavles is called the C-free space



Collision-free space
● C-free (or C-obst) can be difficult to compute in the C-space...

C-free/C-obst representation 
for a 2-joint robot arm (the 
point in blue) in space 
[0,360]x[0,360]



Path and trajectories in C-space
Defintions: 

● Path: a path is a continuous sequence of configurations
○ A path connects an initial configuration qs to a final configuration qf 
○ And does not collide with any obstacle along the path (ie all qi belongs to C-free)

● Trajectory: a trajectory is a path with explicit parameterization of time
○ A trajectory connects an initial configuration qs at time 0 to a final configuration qf at time 1 
○ And does not collide with any obstacle along the trajectory (ie all qi belongs to C-free)



And now we need to plan...
Path planning / trajectory planning / motion planning…?

State (rigid body mechanics) - Position and velocity at a given moment in time.

Motion - The change of state at any instant in time of a body (or bodies).

Trajectory - The state of a body or bodies over a period of time.

Path - The position of a body or bodies over a period of time without worrying about velocity or higher 
order terms.

Planning - Calculating how to compose and sequence a set of primitives in a way that takes a body from 
an initial state to a final state while respecting a set of constraints (avoiding obstacles or burning minimal 
fuel for instance).

Therefore, you can do path planning (no time), trajectory planning (over time), motion planning (planning 
the sequence of changes in state, generally through actuators -- engines).



Framework

• Avoid searching the entire space

• Pre-compute an hopefully small
graph (the roadmap) such that
staying on the roads is
guaranteed to avoid the 
obstacles

• Find a path between q_start and 
q_goal by using the roadmap

Continuous
representation

Discretization Graph Search



Basic approaches



Visibility graphs

In the absence of obstacles, the 
best path is the straight line 
between q_start and q_goal



Visibility graphs

• Assuming polygonal obstacles: it
looks like the shortest path is a 
sequence of straight lines joining
the vertices of the obstacles

• Is it always true?



Visibility graphs

• Visibility graph G = set of 
unblocked lines between the 
vertices of the obstacles + 
q_start and q_goal

• A node P is linked to a node P’ if  
P’ visible from P

• Solution = shortest path in the 
visibility graph



Visbility Graphs

• Construction: sweep algorithm

• Sweep a line originating at each 
vertex

• Record those lines that end at 
visible vertices

• Complexity
• N = total number of vertices of the 

obstacle polygons

• Naïve: O(N3)

• Sweep: O(N2 log N)



Visbility Graphs

• Shortest path but:
• Tries to stay as close as possible to 

obstacles
• Any execution error will lead to a 

collision
• Complicated in >> 2 dimensions

• We may not care about strict 
optimality so long as we find a safe 
path. Staying away from obstacles 
is more important than finding the 
shortest path

• Need to define other types of 
“roadmaps”



Voronoi Diagram

• Given a set of data points in the 
plane:
• Color the entire plane such that 

the color of any point in the plane 
is the same as the color of its 
nearest



Voronoi Diagram



Voronoi Diagram

• Voronoi diagram 
= 
The set of line segments 
separating the regions 
corresponding to different colors

• Line segment = points 
equidistant from 2 data points

• Vertices = points equidistant 
from > 2 data points



Voronoi Diagram

• Complexity (in the plane):
• O(N log N) time

• O(N) space

• Beyond points:
• Edges are combinations of straight 

line segments and segments of 
quadratic curves 

• Straight edges: Points equidistant 
from 2 lines

• Curved edges: Points equidistant 
from one corner and one line



Voronoi Diagram

• Key property: 
The points on the edges of the 
Voronoi diagram are the furthest 
from the obstacles

• Idea: 
Construct a path between 
q_start and q_goal by following 
edges on the Voronoi diagram
(Use the Voronoi diagram as a 
roadmap graph instead of the 
visibility graph)



Voronoi Diagram

• Difficult to compute in higher 
dimensions or nonpolygonal
worlds
• Approximate algorithms exist
• Use of Voronoi is not necessarily the 

best

• heuristic (“stay away from 
obstacles”) Can lead to paths that 
are much too conservative

• Can be unstable  Small changes in 
obstacle configuration can lead to 
large changes in the diagram



Cell decomposition



Approximate cell decomposition

• Define a discrete grid in C-Space
• Mark any cell of the grid that 

intersects Cobs as blocked

• Find path through remaining 
cells by using (for example) A* 
(e.g., use Euclidean distance as 
heuristic)

• Cannot be complete as 
described so far. Why?



Approximate cell decomposition



Approximate cell decomposition

• Cannot find a path in this case even 
though one exists

• Solution: distinguish between
• Cells that are entirely contained in 

Cobs (FULL) and
• Cells that partially intersect Cobs 

(MIXED)

• Try to find a path using the current 
set of cells

• If no path found:
• Subdivide the MIXED cells and try 

again with the new set of cells



Quadtree decomposition



Octree decomposition



Approximate cell decomposition



Approximate cell decomposition

• Good:
• Limited assumptions on obstacle 

configuration
• Approach used in practice
• Find obvious solutions quickly

• Bad:
• No clear notion of optimality 

(“best” path)
• Trade-off 

completeness/computation
• Still difficult to use in high 

dimensions



Exact cell decomposition



Exact cell decomposition

• The graph of cells defines a 
roadmap

• …

• And can be used to find a path
between any two configuration



Exact cell decomposition

Plane Sweep algorithm

• Initialize current list of cells to empty

• Order the vertices of Cobs along the x 
direction

• For every vertex:
• Construct the plane at the corresponding x 

location
• Depending on the type of event:

• Split a current cell into 2 new cells OR

• Merge two of the current cells
• Create a new cell

• Complexity (in 2-D):
• Time: O(N log N)
• Space: O(N)



Exact cell decomposition

• A version of exact cell 
decomposition can be extended 
to higher dimensions and non-
polygonal boundaries 
(“cylindrical cell decomposition”)

• Provides exact solution  -> 
completeness

• Expensive and difficult to 
implement in higher dimensions

• (double exp. Complexity)



Potential fields

• Stay away from obstacles: 
Imagine that the obstacles are 
made of a material that generate 
a repulsive field

• Move closer to the goal: Imagine 
that the goal location is a 
particle that generates an 
attractive field



Potential fields



Potential fields



Potential fields



• Potential fields in general exhibit
local minima

• Special case: Navigation function
• U(qgoal) = 0

• For any q different from qgoal, 
there exists a neighbor q’ such 
that U(q’) < U(q)



Getting out of Local Minima

Repeat
• If U(q) = 0 return Success
• If too many iterations return 

Failure
• Else:

• Find neighbor qn of q with smallest 
U(qn)

• If U(qn) < U(q) OR qn has not yet 
been visited

• Move to qn (q <- qn)
• Remember qn

Repeat
• If U(q) = 0 return Success
• If too many iterations return 

Failure
• Else:

• Find neighbor qn of q with smallest 
U(qn)

• If U(qn) < U(q)
• Move to qn (q qn)

• Else
• Take a random walk for T steps starting 

at qn
• Set q to the configuration reached at 

the end of the random walk



Large C-space dimension

• Millipede like robot (S. Redon)

• 13.000 dofs!



Dealing with C-Space Dimension

• We should evaluate all the 
neighbors of the current state, but:

• Size of neighborhood grows 
exponentially with dimension

• Very expensive in high dimension

Solution:

• Evaluate only a random subset of K 
of the neighbors

• Move to the lowest potential 
neighbor



Dealing with C-Space Dimension



Planners for high-dimensional spaces
● Ideally one would want a COMPLETE 

planner (if there is a solution, it will be 
found)

● Problem: the complete planners are 
P-SPACE!

● Solutions: reduce the search space
○ By adding some constraints
○ By expressing the problem in an alternate space 

(easier to solve)
○ By not visiting all configurations (ie a subset only)
○ By removing the optimality hypothesis (not the best 

solution)
○ By removing the completeness hypothesis (no 

guarantee to succeed if there is a path)



Probabilistic Roadmaps Method (PRM)

• Relies on 3 elements:
• Collision checker

• Local Method

• Sampler

• 2 major steps:
• Exploration Phase

• Query Phase

• Key Idea: explore randomly C-space and 
capture C-free topology into a roadmap

• Complete in infinite time:
probabilistically complete



Preprocessing: learning phase

• Iterative algorithm

1. Compute random configuration
• Collision checker

2. Connect configuration
• Collision checker

• Local method

3. Goto 1
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Preprocessing: learning phase

• Iterative algorithm

1. Compute random configuration
• Collision checker

2. Connect configuration
• Collision checker

• Local method

3. Goto 1



Query Phase

• Roadmap is reused for solving queries 

1. Connect desired initial and final 
configurations

2. If corresponding nodes belong to the same 
connected component, a solution exists

3. Graph Search 

qinit

qgoal
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Query Phase

• Roadmap is reused for solving queries 

1. Connect desired initial and final 
configurations

2. If corresponding nodes belong to the same 
connected component, a solution exists

3. Graph Search 

4. Optimization
qinit

qgoal



Good & bad news

• Sample-based: The Good News
• Probabilistically complete
• Do not construct the C-space
• Apply easily to high-dimensional C-space
• support fast queries w/ enough 

preprocessing

Many success stories where PRMs 
solve previously unsolved problems

• Sample-Based: The Bad News
• Don’t work as well for some problems:

• unlikely to sample nodes in narrow 
passages

• hard to sample/connect nodes on 
constraint surfaces

• No optimality or completeness



Distance functions

• Really, D should reflect the likelihood that the 
planner will fail to find a path

• close points, likely to succeed
• far away, less likely

• Ideally, this is probably related to the area 
swept out by the robot

• very hard to compute exactly
• usually heuristic distance is used

• Typical approaches
• Euclidean distance on some embedding of c-

space

• Embedding is often based on control points 
(recall end of potential field chapter)

• Alternative is to create a weighted combination 
of translation and rotational “distances”

• Workspace volume

• Example:



Local planner

• Collision checker

• How to choose step size? 



Expansion

• Sometimes G consists of several large and 
small components which do not 
effectively capture the connectivity of 
Qfree

• The graph can be disconnected at some 
narrow region

• Assign a positive weight w(c) to each 
node c in V

• w(c) is a heuristic measure of the 
“difficulty” of the region around c. So w(c) 
is large when c is considered to be in a 
difficult region. We normalize w so that 
all weights together add up to one. The 
higher the weight, the higher the chances 
the node will get selected for expansion.

• Can pick different heuristics
• Count number of nodes of V lying within 

some predefined distance of c.
• Check distance D from c to nearest 

connected component not containing c.
• Use information collected by the local 

planner. (If the planner often fails to 
connect a node to others, then this 
indicates the node is in a difficult area).



What if we fail

• Maybe the roadmap was not adequate.

• Could spend more time in the Learning Phase

• Could do another Learning Phase and reuse R constructed in the first 
Learning Phase. In fact, Learning and Query Phases don’t have to be 
executed sequentially.



Sampling Strategies

• Uniform is good because it is 
easy to implement but is bad 
because of

• Learning Phase
• Construction Step

• Uniform sampling
• New sampling

• Expansion Step
• Uniform around neighbor (local 

repair)
• New sampling

• Query Phase



Different Strategies

• Near obstacles

• Narrow passages

• Visibility-based

• Manipulatibility-based

• Quasirandom

• Grid-based



Sample Near Obstacles

• OBPRM
• qin found in collision
• Generate random direction v
• Find qout in direction v that is free
• Binary search from qin to obstacle 

boundary to generate node

• Gaussian sampler
• Find a q1
• Find another q2 picked from a 

Gaussian distribution centered at q1
• If they are both in collision or free, 

discard. Otherwise, keep the free

• Dilate the space (pushed back via a 
clever resampling)



OBPRM: Finding Points on C-obstacles

• Basic Idea:

1. Find a point in S’s C-obstacle 
(robot placement colliding with 
S)

2. Select a random direction in C-
space

3. Find a free point in that direction

4. Find boundary point between 
them using binary search 
(collision checks)



Sampling Strategy

• Highly constrained problems 
result in huge roadmaps:
• Construction is time consuming

• Search is time consuming

• Sampling Strategies help in 
reducing the roadmap size

• Example:
• Visibility-PRM



Visibility-PRM

Visibility Domain of 
configuration q:

q



Visibility-PRM

A new configuration
is retained only if
out of the visibility
domain of other 
configurations



Visibility-PRM

A new configuration
is retained only if
out of the visibility
domain of other 
configurations

These configurations
are called “guardians”



Visibility-PRM

A new configuration
is retained only if
out of the visibility
domain of other 
configurations

Or if allow to connect
2 guardians

These configurations
are called “connectors”



Visibility-PRM

(This is a 6-dimensional C-space in 3-D)



RRT: Rapidly-exploring Random trees

• PRM is a multi-query method: the same 
roadmap is reused to solve different queries

• RRT is single-query: the problem is solved 
without preliminary exploration of C-free

qinit

qgoal



RRT: Rapidly-exploring Random trees

• Iterative algorithm:

1. Compute qrand

2. Connect to qnear

3. Insert qnew

4. Goto 1

qinit

qgoal
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RRT: Rapidly-exploring Random trees

• Iterative algorithm:

1. Compute qrand

2. Connect to qnear

3. Insert qnew

4. Goto 1

qinit

qgoal

qrand

qnew



RRT: Rapidly-exploring Random trees

• Iterative algorithm:

1. Compute qrand

2. Connect to qnear

3. Insert qnew

4. until qnew and qgoal connected

qinit

qgoal



Grow two RRTs towards each other



More…

• Planning Algorithms
Steven M. LaValle
http://planning.cs.uiuc.edu/

http://planning.cs.uiuc.edu/


More…

• Nancy Amato’s webpage

• https://parasol.tamu.edu/peopl
e/amato/

• courses+benchmark

https://parasol.tamu.edu/people/amato/


More…

• CMU robot motion planning 
course



More

• OMPL • http://ompl.kavrakilab.org/



[Kuffner 98] Grid-based planning



[Choi 03] Planning Bidep Locomotion



End of first part
Any questions?



My question:
How to handle dynamic 

(changing) environments in 
planning?



Towards Smarter
Cinematographic Drones

Marc Christie
IRISA / INRIA Rennes, FRANCE



Drone Cinematography



Drone Cinematography
A wide-spread technique in the past 10 years (drone film festivals)

See “The circle” movie (DJI) entirely shot by a drone. Cheap technology gives 
aspiring producers ability to match hollywood (see this drone)

https://vimeo.com/218837928
http://www.youtube.com/watch?v=9aPWzlrBO_c
http://www.youtube.com/watch?v=seQoN-Cj66M


Drone Cinematography
A wide-spread technique in the past 10 years (drone film festivals)

See “The circle” movie (DJI) entirely shot by a drone. Cheap technology gives 
aspiring producers ability to match hollywood 

http://www.youtube.com/watch?v=9aPWzlrBO_c


What is a Drone, How Do You Control It?
Drone = autonomous control

● Four engine speeds to regulate
● A PID controller uses the difference between a current 

configuration and a desired configuration to compute 
four speed signals 



A Challenging task
No Film grammar for drones (yet) - see multidrone.eu

Generally two persons required : 

● one to control drone’s motion
● one to control drone’s orientation (framing)

Requires skilled operators 

=> very hard to synchronize with objects in motion 

=> timing is essential 

http://www.youtube.com/watch?v=z3-sDQLXg40&t=34
http://www.youtube.com/watch?v=Szv0_sxQjhg


How Smart Are Commercial Drones Today?
● Follow-me technologies to frame a target

○ Using the GPS position of a target
○ Or uses image-based visual tracking

● Control by gestures
○ Image-based analysis (take off, approach, left, right, up)

Can we make them even smarter? 

● Can they decide on optimal view angles?
● Can they compute qualitative motions?
● Can they understand cinematographic language?



SmartER Drone Cinematography

Research challenges:
● Formalize film knowledge for drones
● Plan paths of cinematographic quality at a low 

computational cost 
● Ensuring safety at all times



PART 1 - Automated 
Cinematographic Drones



Drone Videography for flybys [SIG-18]

10

Motivations:
➢ Generate an aesthetic flyby of given buildings

Issues:
➢ Complex tasks for novice users
➢ Requires multiple trials 
➢ Generated videos are often not qualitative 

https://docs.google.com/file/d/1z3FG4gHRdA5SjrTqLrEIXLctNRRpk3sW/preview


Drone Videography for flybys [SIG-18]

11

Motivations:
➢ An aesthetic flyby of given buildings and their environments

User tasks:
➢ Choose the camera angles, choose the camera motions 

around buildings, choose the transitions between buildings?
➢ Create smooth (cinematographic) trajectories
➢ Ensure safety (eg. when drone is hidden by a building)

Issues:
➢ Complex tasks for novice users
➢ Requires multiple trials 
➢ Generated videos are often not qualitative (for novice users)

https://docs.google.com/file/d/1oYvq6VTTggF2lc6p8edRRloFECGGxA4_/preview
https://docs.google.com/file/d/1z3FG4gHRdA5SjrTqLrEIXLctNRRpk3sW/preview


Horus

[Joubert et al., 2015]

Airway
s

[Gebhardt et al., 2016]

• Intuitive Interface
• C4 trajectories
• Simulation

• Offline
• Dedicated to outdoor environments

• Intuitive Interface
• C4 trajectories
• Obstacle Avoidance

• Offline
• Dedicated to static scenes

Existing work



Drone Videography for flybys [SIG-18]

13

Automating this process is computationally complex:
➢ How to choose the best viewpoints among an infinity of 

possibilities? What is a “best viewpoint”?
➢ How to generate best trajectories? What is a “best trajectory”
➢ How to plan a complex sequence of trajectories?

Our approach:
1. Provide a quality metric for views of buildings (called landmarks)
2. Generate qualitative camera moves around landmarks
3. Connect the different camera moves 



Viewpoint quality

14

Viewpoint entropy [Vasquez’01]
➢ Defines how much information a viewpoint conveys

D

➢ Different critera (mean curvature, visibility, alignment, 
silhouette complexity, visual dispersion)

￼
￼

Different criteria considered in the litterature



Viewpoint quality

15

1. Compute saliency of buildings:
➢ Edges provide information on the shape
➢ Centers of areas

2. Compute a “line of thirds” overlay
➢ Regions in the center are preferred
➢ Regions along the ⅓ axes are preferred

3. Compute both information
➢ Results in a viewpoint quality (sum of information)



Ensuring safety

16

Expand 3D buildings with a safety area 
● using a surface Minkowski sum (sphere)

Composing Viewpoint quality 
● creates a scalar field through the scene 

https://docs.google.com/file/d/1FR4RwJazq0Us--BHv-iHMAExO6ipV_Gt/preview


Creating camera moves (1)

17

How to create interesting moves around a building?
➢ Should have a minimum change in height or in angle
➢ Should connect good viewpoints

We propose spatial partitions around each building
➢ Horizontal partitions (max 7 layers)
➢ Vertical partitions (4 partitions)

The best viewpoint is computed in each partition



Creating camera moves (2)

18

A subset of all possible moves is created
➢ Only create moves  across a minimum of 4 partitions 

(horizontally + vertically)

Each trajectory is evaluated (192 possibilities)
➢ Quality of the viewpoints along the move

A selection of the n best moves is performed

https://docs.google.com/file/d/1FR4RwJazq0Us--BHv-iHMAExO6ipV_Gt/preview


Chaining camera moves 

19

Scene is composed of m landmarks
For each landmark: n best moves

How to compute an optimal trajectory?
● Generate all transitions between possible moves
● Evaluate the quality of each transition
➢ Length, curvature, change of directions

Now each move has a quality (cost), each transition has a quality 
(cost), we search for the shorted path through landmarks

=> looks like a Travel Salesman Problem



Solving: Set-TSP

20

A specific case of the TSP:
● we only need to visit ONE move per landmark
● corresponds precisely the Set TSP (or one-of-a-set TSP) [Noon93]



User evaluations

21

Compared three videos. Given the same landmarks:
● Auto: using our automated approach
● Manual: manually flying the drone to shoot the landmarks
● DGS: use DJI GS Pro software on iPad to design a drone path, and run it

Q1; more pleasing video
Q2:clearer overvies of landmarks
Q3:follows a more reasonable route
Q4:provide better transitions
Q5:create smoother trajectories 



Results

22

The computed trajectories are sampled and sent as a sequence of GPS waypoints to 
the drone (DJI Phontom 3 Pro)

https://docs.google.com/file/d/1FR4RwJazq0Us--BHv-iHMAExO6ipV_Gt/preview


PART 2 - Interactive 
Cinematographic Drones

Joint work with 



➢ Have drones that maintain cinematographic properties 
▪ Adapt to changes in the scene (actors locations and 

orientations)

▪ Ensure cinematographic quality in camera motions

➢ Have drones that can frame and “understand 
cinematographic language”
▪ On angles: Over The Shoulder shot, Apex shot,
▪ On sizes: Medium shot size
▪ On framing: placement of targets on the screen

Motivations



[Nageli et al., 2016]

Framing based control

Shot design

[Joubert et al., 2016]

• Based on the Toric Space
• Maintain a given framing

• No obstacle avoidance
• No visibility checking
• Limited motion of actors

• Realtime
• Obstacle Avoidance
• Frame more than 2 actors

• Limited interactions
• Non-cinematographic paths

Existing work



How to Frame with a Drone?

From Cinematographic Properties to Viewpoints



Cinematography
An empirical language defined by cinematographers:

  Shot size Shot angles: 1+3 OTS, 2 Apex

  

Composition

  



 From Properties to Viewpoints
From film language to camera viewpoints:
● A computationally complex problem addressed with optimization
● Each visual property is defined as a cost function on camera 

parameters (7 dofs)

● All visual properties are aggregated in a cost function

● A non-linear solver searches for best viewpoints 
● Computationally expensive (stochastic solvers [Ranon15])

=> we propose a novel parametric space for camera composition problems 



Solution = 1D parametric
manifold (θ) 

Desired on-screen
Composition

(1D)

-1 +1

The Toric Space [Lino2015]

Any configuration c(θ) satisfies the 1D composition

 



Composition: 3D environment

(-1,-1)

(+1,+1)(-1,+1)

(+1,-1)

Solution = 2D manifold
surface (θ,φ) 

(subset of a spindle torus)

Desired on-screen
Composition

(2D)

  A

B

Any configuration c(θ,φ) satisfies the 2D composition



Manipulations in the Toric Space

https://docs.google.com/file/d/0B7cwZ_TM9_N_TFItczhabmc5Q1E/preview


  => casts a 7D camera problem into a 3D camera problem

The Toric space

32

Enables an algebraic expression of cinematographic 

properties:

• Screen composition 

• Horizontal and vertical angles (theta, phi)

• Distance to targets

Cameras can therefore be controlled in an algebraic way



➢Adapt the Toric space to drones 

➢ To ensure actors’ safety (targets A and B)

The Drone Toric space



➢Additional interactions

➢Better optimization scheme

➢Use the roll as cost function

➢Account for obstacles

High 
roll

Low 
roll

Our cost function With Obstacles
Cost function

[Lino et al. 2015]

Image-space Interaction



➢Additional interactions

➢Better optimization scheme

➢Use the roll as cost function

➢Account for the obstacles

➢Adapt the search to the current position

Image-space Interaction



How to Move a Drone In a Cinematographic Way?

Creating Cinematographic Trajectories



User input

1 actor:

2 actors:

Interpolation in the 
Toric Space



➢Collision avoidance mandatory

➢Visibility aware roadmap and A* path planning

➢ [Oskam et al. 2009]

Planning cinematographic paths



➢Collision avoidance mandatory

➢Visibility aware roadmap and A* path planning

➢ [Oskam et al. 2009]

Planning cinematographic paths



➢Planning the path in the space of visual properties

▪ New distance metric based on the toric space

▪ Weighted with visibility information

Initial 
Shot

Desired
Shot

Planning cinematographic paths



➢Collision avoidance mandatory

▪  Use the roadmap

➢Modified A* algorithm to allow loops

➢C4 optimization

Sketching trajectories



➢RESULTS
➢ Indoor tracking using optoelectronic system (VICON)
➢ With Parrot ARDrones 
➢ With Parrot Bebop2

https://docs.google.com/file/d/18tIlsI_phRrOc9WU1UD0ZTLwvfSXruRO/preview
https://docs.google.com/file/d/16YLXFLENq9VRmf3MY1Js-GhY9zLAgnyf/preview


How to Handle Multiple Drones?

Orchestration of drones



➢How to use our technology to synchronize multiple drones?

▪ Every drone covers a different angle of the scene

▪ Drones offer complementary views (for further editing)

▪ Drones react to changes and avoid conflicts

➢Our approach (a TV editor metaphor) 

▪ A master drone (interactively controlled by the user)

▪ Slave drones offering non-conflicting views that satisfy 
“continuity editing”

Handling multiple drones?



Editing

May 9, 2016

• Editing is the art of cutting between view angles
• Choosing when to cut
• Choosing where to cut to
• With which type of transition

• Editing forms a visual « grammar »
• Frames are letters, shots are the words
• Scenes are sentences, films are stories

•  Continuity-editing
• Grammar of the Film Language [Arijon 76]
• Grammar of the Shots [Thomson 98]
• Grammar of the Edit [Thomson 93]
• The five C’s of Cinematography [Mascelli 98]



A general approach: The “editing graph”
[Galvane etal 2015]

May 9, 2016

 

Algorithms and techniques for virtual camera control

Shot 1

Shot 2

Shot 3



« continuity editing» 

May 9, 2016

• Controls how storyline actions are perceived all together
• Make link between pieces of information
• Guide viewers’ attention (visual cues)

• Controls how a given action is perceived as continuous in time
• Do not break continuity (coherency)

Algorithms and techniques for virtual camera control

Good cut

Bad cut
Line of interest

Current

A B



• Penalize cuts breaking continuity
• On absolute screen positions

• Cost function:

Cut quality: absolute screen positions

May 9, 2016

Discontinuity

Continuity

Algorithms and techniques for virtual camera control

 



• Penalize cuts breaking continuity
• On relative screen positions

• Cost function:

May 9, 2016

Discontinuity

Continuity

Algorithms and techniques for virtual camera control

 

Cut quality: relative screen positions



• Penalize cuts breaking continuity
• On gaze directions

• Cost function:

May 9, 2016

Discontinuity

Continuity

Algorithms and techniques for virtual camera control

 

Cut quality: gaze continuity



• Penalize cuts breaking continuity
• On apparent motions

• Cost function:

May 9, 2016

Discontinuity

Continuity

Algorithms and techniques for virtual camera control

 

Cut quality: motion continuity



• Penalize cuts that do not look like cuts (visually, not enough change in size or view 
angle)

• Cost function :
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« Jump cut »

Sufficient change in size

Algorithms and techniques for virtual camera control

Sufficient change in view angle

Avoid “jump cuts”



Handling multiple drones
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➢Define tagged regions “ 18 semantic volumes”

▪ In Toric space coordinates

▪ Relative to the targets 



Handling multiple drones?
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➢Remove conflicting areas for slave drones

▪ Remove areas with visibility 
conflicts

▪ Remove areas that fail “continuity 
editing”

 
➢Select a possible volume

▪ Shortest path to a volume

▪ That avoids visibility by Master

Master

Slave



 
➢Use a min-conflict solving process

▪ Find the slave drone with the minimum number of conflicts

▪ Search a semantic assignment for that drone

▪ If failure, search for an assignment for the two slaves drones 
with minimum number of conflicts

➢Practical complexity is low (even with 3 slaves)

▪ 4k combinations

▪ Above 4 drones, the environment gets cluttered

Searching for non-conflicting assignments



➢Handling planning through the roadmap

➢ Frustum culling in the roadmap



➢RESULTS

https://docs.google.com/file/d/18tIlsI_phRrOc9WU1UD0ZTLwvfSXruRO/preview


➢ PreciseTarget localisation remains a problem
➢A possible immediate use case using GPS (from multidrone.net)



Discussion



Issues? 

60

● Precise localisation (indoor / outdoor)
○ Using Ultra Wide Band technology? 
○ Using robotics SLAM technology?

=> Yet, some outdoor scenario remain possible! 

● Precise 3D representations for path planning and 
viewpoint quality
○ Use 3D reconstructed maps (photogrammetry)



But what’s next?

• Towards data-driven cinematography for drones (taking 
inspiration from real footage)
– Extracting framing/motion features from sequences
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Using DLIB tracker + OpenPose

http://www.youtube.com/watch?v=z3-sDQLXg40


But what’s next [next 10 years]
• Automated shooting of documentaries :

– Mini-drones framing and stabilizing the image
– Choosing the right angles wrt background and light
– Mini-drones lighting the scene
– Analyzing motions and facial expressions to cut/reframe (ie 

indirectly control the drone through postures)
–
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Bridging intention and techniques
• Spatio-temporal reasoning on footage
• Opens many possibilities to learn deeper relations 

between the content/events and the technique 
(camera/light/etc) 
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Cognitive & Emotional Cinematography
• Storytelling “The art of bringing an audience from a 

given cognitive and emotional state to an intended 

state, through a set of cognitive and emotions 

changes” (hence it’s a state planning problem!)


